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Abstract
The critical behaviour of two-dimensional stochastic lattice gas models with
C3v symmetry is analysed. We study the cumulants of the order parameter
for the three-state (equilibrium) Potts model and for two irreversible models
whose dynamic rules are invariant under the symmetry operations of the point
group C3v . By means of extensive numerical analysis of the phase transition we
show that irreversibility does not affect the critical behaviour of the systems.
In particular, we find that the Binder reduced fourth-order cumulant takes a
universal value U∗ which is the same for the three-state Potts model and for the
irreversible models. The same universal behaviour is observed for the reduced
third-order cumulant.

PACS numbers: 05.50.+q, 05.70.Lu

1. Introduction

The critical behaviour of nonequilibrium systems has been amply studied in the last few years
[1–4]. These studies consider stochastic lattice models and probabilistic cellular automata that
evolve in time according to an irreversible dynamics, that is, a dynamics that lacks detailed
balance. An important aspect to be considered is the role of symmetry. Distinct systems
with the same symmetry are expected to have similar critical behaviour. The symmetry is to
be found in the Hamiltonian for reversible systems and in the dynamics for the irreversible
systems. Among the irreversible models, there are models that have a reversible counterpart
with the same symmetries. In this context, it has been established by the following statement:
models with up-down symmetry, similar to the Ising model, and defined on the same lattice,
reversible or not, are in the same universality class [5]. This has been verified numerically for
a large number of models [6–12]. We note that the same universal behaviour is also observed
for dynamic phase transitions in Ising models in oscillating fields [13–15].
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Recently [16–18], we have argued that this statement can be extended to models with
other symmetries. In fact, in these works, we considered probabilistic cellular automata with
dynamics that possess C3v symmetry and verified that the values of the critical exponents, both
static and dynamic, for irreversible systems are the same as those of the equilibrium three-
state Potts. That is, irreversibility is irrelevant regarding the values of the critical exponents in
systems with the symmetry of the Potts models. In this paper, we complete these analyses by
performing a systematic study of the cumulants at the critical point. We consider stochastic
lattice gas models with C3v symmetries: the three-state Potts model [19] and two irreversible
models, and focus our attention on the determination of the third- and fourth-order cumulants
of the order parameter. We present a Monte Carlo study of these properties for models
defined in a regular square lattice. Our results show that the values of the cumulants, at the
critical point, obtained for the present nonequilibrium models, and those associated with the
two-dimensional three-state Potts (equilibrium) model are the same within numerical errors.

The paper is organized as follows. In section 2 we present the models to be studied.
In section 3, the quantities of interest in the study of the phase transition and their scaling
properties are defined. The values of the cumulants in the limit of infinite temperature and
zero temperature are discussed in section 4. Sections 5 and 6 show numerical calculations and
concluding remarks.

2. Models

Consider a regular lattice of N sites in which each site can be in one of three states. At each
site we attach a stochastic variable σ i that takes the values 1, 2 and 3. The state of the system
can be represented by σ = (σ1, σ2, . . . , σN). The time evolution equation for P(σ, t), the
probability of state σ at time t, is given by the master equation

d

dt
P (σ, t) =

∑
σ ′

{W(σ | σ ′)P (σ ′, t) − W(σ ′ | σ)P (σ, t)} (1)

where the sum is over the 3N configurations of the system. W(σ | σ ′) is the transition rate
from a state σ ′ to a state σ , given that at the previous time step the system was in state σ ′. We
will consider dynamics where σ and σ ′ can differ only by one site which we call a one-site
dynamics. In this case, we have

d

dt
P (σ, t) =

∑
α

N∑
i=1

{wi(σ
iα)P (σ iα, t) − wi(σ )P (σ, t)} (2)

where wi(σ ) is the transition probability per site and

σ iα = (σ1, σ2, . . . , σi + α, . . . , σN) (3)

with α = 1, 2. The states are defined modulo 3.
The transition probability W(σ | σ ′) is invariant under certain symmetry operations, that

is, W(Rσ | Rσ ′) = W(σ | σ ′) where R is a symmetry operation. For the present models the
symmetry operations R are those that act on all sites transforming each of them in the same
manner. One of the symmetry operations is the rotation operation 1 → 2, 2 → 3 and 3 → 1.

Another is the operator 2 � 3 with state 1 fixed. If the three states are placed on the vertices
of an equilateral triangle they correspond, respectively, to a rotation operation by 120◦ and a
specular operation. These symmetry operations then define the point group C3v .
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2.1. Equilibrium model and Metropolis prescription

The Hamiltonian of the three-state Potts model is

H =
∑
(ij)

−J δ(σi, σj ) (4)

where σi = 1, 2, 3, J > 0 is the interacting strength between the nearest-neighbour sites i and
j and δ is the Kronecker delta.

To simulate the model we associate with it a dynamics. We consider a one-site dynamics
as described by the master equation (2). In the case the model to be analysed is an equilibrium
model it is necessary to use a transition probability wi(σ ) that satisfies a detailed balance
condition. That is, in the stationary state we must have

wi(σ
iα)P (σ iα, t) = wi(σ )P (σ, t). (5)

This dynamics can be defined by using the Metropolis prescription. We choose a site i and a
state α and calculate

wi(σ ) = min{1, exp(−β�H)} (6)

where �H = H(σ) − H(σ iα) is the difference between the energy of the state σ and the
energy of the state σ iα . The parameter β is associated with the inverse of the temperature T.
Numerically, we studied the critical point associated with the model by performing Monte
Carlo simulations. This procedure is described in section 6.

2.2. Nonequilibrium models

The nonequilibrium models are defined as follows. For the case of a square lattice we denote
the transition probability w0(σ ) by w(σ0|σ1, σ2, σ3, σ4), where the sites 1, 2, 3 and 4 are the
first neighbours of site 0.

2.2.1. Symmetric stochastic lattice gas model

(a) If in the neighbourhood of a given site there is a majority of sites which are in one state
then, independently of the state of the site, it changes to the state of the majority with
probability p. It changes to one of the two other states with probability (1 − p)/2.

(b) If no state is in majority then the site assumes either state with equal probability.

According to the local rules of the model we have

w(1 | 1111) = w(1 | 1112) = w(1 | 1113) = w(1 | 1123) = p

and

w(1 | 1122) = w(1 | 1133) = w(1 | 2233) = 1/3. (7)

The other rules are obtained by permutation of the neighbouring sites and by cyclic permutation
of the states.

2.2.2. Majority stochastic lattice gas model. The model consists of a stochastic lattice gas
model where the site transition probabilities follow rules similar to those of the majority vote
model [8]. The chosen site adopts the same value as that of the majority of the nearest-
neighbour sites with probability p. It adopts the state of the other states with probability
q/2 = (1 − p)/2. If there is an equal number of nearest-neighbour sites in the same state
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then the chosen site adopts each state with probability p/2 or it assumes the other state with
probability q. That is,

w(1 | 1111) = w(1 | 1112) = w(1 | 1113) = w(1 | 1123) = p

w(1 | 1122) = w(1 | 1133) = p/2
(8)

w(1 | 2233) = (1 − p)

w(1 | 1222) = w(1 | 1333) = w(1 | 3222) = w(1 | 3312) = (1 − p)/2.

The other rules are obtained by permutation of the neighbouring sites and by cyclic permutation
of the states.

It is straightforward to check that the transition probabilities wi(σ ), for both models, are
invariant under the symmetry operations of the group C3v .

The nonequilibrium models have the same symmetries as the Hamiltonian of the three-
state Potts model, given in (4), although in the present case the models are not defined by
a Hamiltonian and do not satisfy detailed balance condition (5). That is, these models are
microscopically irreversible.

3. Cumulants and scaling properties

A convenient way of analysing the present models is through the use of the variables

xα = 1

N

N∑
i=1

(
δ(σi, α) − 1

3

)
(9)

where α assumes the values 1, 2 and 3 and δ(x, y) is the Kronecker delta. The order parameter
has three components x1, x2 and x3, but just two of them are independent and the following
property

x1 + x2 + x3 = 0

holds.
It is useful also to introduce a set of homogeneous functions In(x1, x2, x3), of a given

order n, which are invariant under the symmetry operations R defined above. There is just one
independent second-order invariant given by

I2 = 1
3

(
x2

1 + x2
2 + x2

3

)
(10)

and just one independent third-order invariant

I3 = − 2
9

(
x3

1 + x3
2 + x3

3

)
. (11)

The fourth-order invariant function is

I4 = 2
9

(
x4

1 + x4
2 + x4

3

)
. (12)

Again there is just one independent fourth-order invariant.

3.1. Cumulants

In the present study, the quantities of interest are the order parameter,

m = |−→m | = 〈
√

I2〉 (13)

and the reduced cumulant,

U24 = 〈I4〉
〈I2〉2

(14)
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and, also, the Binder fourth-order cumulant which in terms of I4 and I2 defined above is given
by

U = 1 − 1
3U24. (15)

We also analysed the behaviour of the order three reduced cumulant,

U23 = 〈I3〉
〈I2〉3/2

. (16)

3.2. Scaling properties

The order parameter −→m has two independent components x and y and we will denote

−→m = 1√
2
(x

−→
i + y

−→
j ) (17)

where x and y are related to x1, x2 and x3 by the relations

x1 = −
√

3
2 x − 1

2y x2 =
√

3
2 x − 1

2y (18)

x3 = y. (19)

The invariants (10), (11) and (12) are written, in terms of x and y, as

I2 = 1
2 (x2 + y2) (20)

I3 = 1

2

(
x2y − y3

3

)
(21)

I4 = 1
4 (x4 + 2x2y2 + y4). (22)

Our main interest is to calculate the moments of the distribution associated with the order
parameter. The moment Mn of order n can be defined by

Mn = 〈|m|n〉 =
∫

|m|nP (m, ε, L) dm

where P(m, ε,L) is the probability distribution of m = |−→m |, where −→m = 1√
2
(x, y), and ε is

equal to the deviation of the external parameter from its critical value and L is the system size.
We assume that

P(m, ε,L) = Lβ/νφ(m/εβ, Lεν). (23)

Defining z = m/εβ ,

Mn = εβ(n+1)Lβ/ν

∫
|z|nφ(z, Lεν) dz.

Then,

Mn = εβn(ενL)β/νFn

(
εL1/ν

)
(24)

where Fn(Y ) is an universal function.
From relation (24), we get the following scaling forms

M1 = 〈m〉 = L−β/νm̃
(
εL1/ν

)
(25)

M4

(M2)2
= Ũ 24

(
εL1/ν

)
(26)
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and
M3

(M2)3/2
= Ũ 23

(
εL1/ν

)
(27)

where ε is the deviation of the external parameter from its critical value and m̃(x), Ũ 23(x) and
Ũ 24(x) are universal functions.

For an infinite system the correlation length diverges as ξ ∼ ε−ν and the scaling forms
give the behaviour m ∼ εβ for the order parameter. Moreover, the reduced cumulants U24

and U23, defined in equations (14) and (16), are expected to attain, according to (26) and
(27), a universal value at the critical point, which does not depend on the lattice size. The
same behaviour, of course, must hold for the reduced fourth-order cumulant U given in
equation (15).

4. Exact results

When the temperature T → 0 the equilibrium model defined by the Hamiltonian (4) will be in
the ordered phase and with probability 1 in one of the three Potts states. For the nonequilibrium
models, defined in (7) and (8), this limit corresponds to p → 1.

In this limit the following behaviour is expected,〈
(xα)n

〉 →
{(

1
3

) (
2
3

)n
+

(
1
3

) (− 1
3

)n
+

(
1
3

) (− 1
3

)n
}

(28)

with α = 1, 2 and 3 and n = 1, 2, 3, . . .. Depending on the initial conditions the system will
be, for all sites in the lattice, in the states where σi = 1, σi = 2 or σi = 3. The factor

(
1
3

)
in

equation (28) takes into account this fact. For example, the second-order invariant, defined in
expression (10), will attain the value

I2 → 1
3

{(
1
3

) (
2
3

)2
+

(
1
3

) (− 1
3

)2
+

(
1
3

) (− 1
3

)2
}

that is, I2 → 2/9 when T → 0 (p → 1).

Following the same procedure, the limiting values of the third- and fourth-order invariants
and the reduced cumulants can be easily evaluated. In particular, the values of the fourth-order
cumulant, defined in (14), in the limit T → 0 (p → 1), will be

U24 → 1 (29)

which implies that the Binder fourth-order cumulant, according to equation (15), takes the
limit

U → 2
3 . (30)

On the other hand, when the temperature T → ∞ (p → 1/3) the equilibrium system (the
nonequilibrium symmetric model) is in the disordered state,

x1 = x2 = x3 = 0.

So the probability distribution associated with the order parameter is a distribution of
independent variables, a Gaussian distribution, and we can write

P(x, y) = 1

2πa
exp[−(x2 + y2)/2a] (31)

with

a = 〈(x2 + y2)/2〉.



Cumulants of the three-state Potts model and of nonequilibrium models with C3v symmetry 5385

So in this limit we have that expressions (20) and (22) are related by

I4 = 3(I2)
2 (32)

which implies that

U24 → 3 (33)

and

U → 0. (34)

The third-order invariant I3 → 0 when T → ∞ (p → 1/3). So U23 → 0.

5. Monte Carlo simulations

The system evolves in time according to the local rules and eventually reaches a steady state
that can be of two types: a disordered steady state, where there is an equal average number
of sites in each one of the three Potts states; or an ordered steady state characterized by the
predominance of sites in one of the Potts states.

The simulation of the equilibrium and the nonequilibrium models with C3v symmetry
was performed by considering square lattices with L2 = N sites, and periodic boundary
conditions. Each simulation started with a configuration generated at random and averages
over several simulations were taken to get the final results.

5.1. Equilibrium model

We consider several values of the external parameter, the temperature T . We pick a site i at
random and then apply the Metropolis prescription to update site i according to the expression
(6) as follows. Let the state of the site i be σi . We change the site variable to σi + α and
calculate �H according to the expression (4) considering the nearest-neighbour sites of the
site i (which have not changed, since we are considering a one-site dynamics). If �H � 0,
then the new state will be σ iα = (σ1, . . . , σi+α, . . . , σN ). Otherwise, if �H > 0, we calculate
p = exp(−β�H) and generate a random number ζ equally distributed in the interval [0, 1].
If ζ � p then the new state will be σ i , otherwise the state does not change, that is, remains σ .

The system evolves in time until it reaches a stationary state. The time taken by the system
to reach the stationary state depends on the temperature and the lattice size. After discarding
the first configurations, we used the following states in order to evaluate the state function
cumulants of the distribution probability associated with the order parameter. The stationary
states are equilibrium stationary states, i.e. they satisfy the detailed balance condition. As
expected, we found two types of stationary states: a ordered one where the order parameter m
is different from zero and a disordered one where m = 0.

The critical temperature for the two-dimensional three-state Potts model is given by
kBTc = 1/(ln(

√
3 + 1) 
 0.994 97 [19]. In our simulation we take kB = 1 and analyse the

behaviour of the cumulants ( 14) and (16) as a function of the temperature and for different
lattice sizes. As we can see in figures 1 and 2 when T → Tc the cumulant U24 → U∗

24 and
the cumulant U23 → U∗

23, respectively, and it follows that U∗
24 and U∗

23 are universal. That
is, at the critical point U24 and U23 attain universal values that do not depend on the lattice
size. We used the finite size scaling relations (27) and (26). Expression (27) is related to the
reduced Binder [20] fourth-order cumulant that so assumes an universal value U∗. The values
for these functions at the critical point were found to be

U∗
24 = 1.16 ± 0.01 (35)

and U∗ ∼= 0.61. The value of U23 at the critical point (see figure 2) is U∗
23 = 0.245 ± 0.01.
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T

0.8

1
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1.8

U24

14
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28
40

Figure 1. The reduced cumulant U24 as a function of T for L = 14, 20, 28 and 40 (square lattices)
for the three-state (equilibrium) Potts model.
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T

0.22

0.24

0.26

0.28

U23

14
20
28
40

Figure 2. The reduced cumulant U23 as a function of T for L = 14, 20, 28 and 40 (square lattices)
for the three-state (equilibrium) Potts model.

5.2. Nonequilibrium models

We consider several values of the parameter p. At each time step just one site is chosen at
random and it is updated according to the prescriptions given in section 2.2 (rules (7) for the
symmetric model and rules (8) for the majority model). After a transient, which depends
on the model, the size of the system and the value of p, the system attains a steady state.
Our simulations show that both models exhibit continuous phase transitions with the ordered
steady state (m �= 0) occurring at high values of p. As p is decreased the transition takes place



Cumulants of the three-state Potts model and of nonequilibrium models with C3v symmetry 5387

0.88 0.89 0.9
p

0.5

1

1.5

2

2.5

U24

14
20
28
40

Figure 3. The reduced cumulant U24 as a function of p for L = 14, 20, 28 and 40 (square lattices)
for the three-state symmetric model (nonequilibrium).
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Figure 4. The reduced cumulant U23 as a function of p for L = 14, 20, 28 and 40 (square lattices)
for the symmetric model (nonequilibrium).

at a critical value pc, which is different for each model, and the system becomes disordered
(m = 0) for p less than pc.

Using the finite size scaling relations (27) and (26) we obtain the critical value pc for
each model. For the symmetric lattice gas model, as shown in figures 3 and 4, the curves of
U24 versus p and the curves of U23 versus p, for different values of L, intercept at the critical
point pc estimated to be pc = 0.892 ± 0.003. It is worth calling to attention that this model
is similar to that considered by one of us in a previous work [17]. Both models evolve in
time according to the same local Markovian rules. However, the model considered in [17] is
a probabilistic cellular automaton (synchronous update) whereas the present model evolves
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Figure 5. The reduced cumulant U24 as a function of p for L = 14, 20, 28 and 40 (square lattices)
for the three-state (nonequilibrium) majority model.
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Figure 6. The reduced cumulant U23 as a function of p for L = 14, 20, 28 and 40 (square lattices)
for the three-state (nonequilibrium) majority model.

in time according to a sequential dynamics (asynchronous update). As irreversible models
are defined by the dynamics itself we do not have to expect the same value of the critical
parameter. In fact they are different. We also observe that the results obtained previously [17]
for the fourth-order cumulant for the probabilistic cellular automaton are not sufficient precise
due to the presence of large fluctuations. In contrast, in the study of the stochastic lattice gas
models considered here, we verified that the behaviour of the cumulants, both of third and
fourth orders, is smooth.

Figures 5 and 6 show the curves of U24 versus p and the curves of U23 versus p for
different values of L for the majority stochastic lattice gas model. The interception of these
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curves yields the critical point estimated to be pc = 0.883 ± 0.001. The values attained by
U23 and U24 are universal and are U∗

23 = 0.244 ± 0.01 and U∗
24 = 1.16 ± 0.01. And the Binder

reduced fourth-order cumulant is U∗ ∼= 0.61. These universal values are in agreement with the
results for the (equilibrium) three-state Potts model.

6. Summary

We have considered systems that undergo a phase transition from a state with high symmetry to
a state with lower symmetry. The phase with high symmetry is invariant under the symmetry
operations of the symmetry group C3v . We analysed first the equilibrium three-state Potts
model, and then two irreversible models. All models have a continuous time evolution,
governed by a master equation. In the first case, the model is defined by an Hamiltonian
whereas in the second case they are defined only by the transition rates that do not obey the
detailed balance condition. The phase transition that takes place, as an external parameter is
varied, is a continuous phase transition from a disordered steady state to an ordered steady
state. For the case of the equilibrium model, the phase transition occurs when the temperature
T is varied and for the nonequilibrium cases when the parameter p is varied. We introduced a
set of homogeneous functions that are invariant under the symmetry operations of the group
C3v . From these functions we define the order parameter and the cumulants. The critical points
were estimated by numerical simulations on regular square lattices of different sizes and by
using finite size scaling theory. Analysing the cumulants we conclude that irreversibility plays
an irrelevant role in the critical behaviour and is not a property that might change the universal
behaviour. In fact, the fourth- and third-order cumulants attain universal values at the critical
point and we found that these values are the same for the equilibrium and the nonequilibrium
systems, whenever periodic boundary conditions are considered. It is worthwhile observing
that the value of the cumulants may depend on the boundary conditions, as was established
for the equilibrium two-dimensional models [21].
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